You're describing a compound with a rather complex chemical name, and its importance lies in its potential for research. Let's break down the key aspects:
**1. Chemical Structure:**
* **(3S)-:** This indicates the stereochemistry at the third carbon in the tetrahydroisoquinoline ring. The S configuration specifies a specific arrangement of substituents around that carbon.
* **N-[2-(2,3-dihydro-1,4-benzodioxin-6-ylamino)-2-oxoethyl]-:** This complex part describes a side chain attached to the nitrogen of the tetrahydroisoquinoline. It features a benzodioxin ring (a cyclic structure with an oxygen atom bridging two benzene rings) and an amide group (-CONH-).
* **1,2,3,4-tetrahydroisoquinoline-3-carboxamide:** This is the core structure of the compound, a modified isoquinoline ring system. It features a carboxamide group (-CONH2) attached to the third carbon atom.
**2. Potential Research Significance:**
This compound likely has a complex biological profile. Its structure suggests it may be:
* **A Drug Candidate:** The presence of a benzodioxin ring and an amide group are often associated with drug-like properties. Researchers might investigate this compound for its potential to interact with specific biological targets.
* **A Probe Molecule:** The complex structure and potentially unique properties of this compound could make it useful for studying cellular processes. It may bind to receptors or enzymes in a unique way, providing insights into their function.
* **A Starting Point for Synthesis:** The compound's unique features might serve as a starting point for designing new molecules with even more specific or beneficial effects.
**3. Important Research Areas:**
Given its structure, research related to this compound could focus on:
* **Neurology:** Isoquinoline derivatives often have neuroactive properties. Research could explore its potential as a treatment for neurological disorders like anxiety, depression, or Parkinson's disease.
* **Cancer:** The benzodioxin ring and amide groups are often associated with anticancer activity. Research could investigate this compound's potential as a cytotoxic agent against different types of cancer cells.
* **Inflammatory Diseases:** Some benzodioxin derivatives have shown anti-inflammatory properties. This compound could be investigated for its potential to reduce inflammation in various diseases.
**4. Key Points:**
* The precise structure and properties of this compound would need to be further investigated to determine its actual biological activity and potential applications.
* This compound is likely just one example of many potential research targets derived from the combination of different chemical moieties.
* Research on this compound could contribute to the development of new drugs, treatments, and diagnostic tools.
Remember, without further information, such as specific biological assays or experimental data, it's impossible to definitively state the importance of this specific compound. However, its structural features suggest a potential for interesting research and development.
ID Source | ID |
---|---|
PubMed CID | 8027854 |
CHEMBL ID | 1708012 |
CHEBI ID | 112767 |
Synonym |
---|
STK612734 |
AKOS005547353 |
smr000652297 |
MLS001158273 |
CHEBI:112767 |
(3s)-n-[2-(2,3-dihydro-1,4-benzodioxin-6-ylamino)-2-oxoethyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxamide |
HMS2950E21 |
CHEMBL1708012 |
Q27193003 |
Class | Description |
---|---|
peptide | Amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another with formal loss of water. The term is usually applied to structures formed from alpha-amino acids, but it includes those derived from any amino carboxylic acid. X = OH, OR, NH2, NHR, etc. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 1.0000 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 26.8545 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 28.1838 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 16.4619 | 0.0041 | 10.8903 | 31.5287 | AID504466; AID504467 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 79.4328 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 39.8107 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 11.2202 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |